· Threading is needed to communicate between two or more applets.

· images folder

· USGS logo

· ImgHTML folder

· Map projection images

· Webpage of each projection type and its uses

· ResultsHTML folder

· The web pages of suggested projections for the global projections; two projection pages for Cylindrical Equal Area and Any Equal Area or Cylindrical Equal Area for the regional projections.

· Java Files and their corresponding web pages and classes

· DSSApplet

· .html – Contains the area for the DSS starting applet and it also contains the parameters that are called from the .java file. It also provides links to where the user can download a copy of the java runtime environment that is necessary to run the applets and a link to the USGS Carto-Research webpage.
· .java – It develops the applet. It starts off by initializing all the necessary variables then sets the conditions of applet, like its dimensions and background color. The user is then allowed to choose what type of area they want to map. If they choose global they are then allowed to choose what they want to preserve (area, size, or compromise), and using what type of data (vector or raster). If they chose raster they then get to choose what type of raster data they want to use (continuous or thematic), then can submit their choices and it will go through decision making logic in order to call the appropriate web browser. If the user chooses a continental area in the type of area, they are taken to the DSSContinent.html webpage to continue their choices. If the user chooses a regional area in the type of area, they are taken to the DSSRegional.html webpage.
· .class files contain un-editable fields, constructors, and methods for the DSSApplet.java file.

· DSSAppletwbutton.html
· Has everything that the DSSApplet has, plus an added button that allows the user to split the browser and view the tutorial on the bottom of the web browser.
· DSSContinent

· .class – Contains all the un-editable fields, constructors, and methods for the DSSContinent.java file.

· .html – Prompts the user to choose what they want to preserve (area or size) and using what type of data (raster or vector). It then prompts the user to click on the continent that they are interested in. It also provides the appropriate web browser addresses when the .java file decides which one it wants to look at.

· .java – It begins by declaring variables that will be used. Then initializes what will be shown, like the map and initializes preserve to "Shape" dataType to "Raster" rasterData to "Continuous". It then initializes the rectangles that will represent the areas of the different continents. It is completely dependant of the number of pixels of the image loaded and the rectangles must include every pixel or there will be an error. It then initializes the lists that the user gets to use to choose what they want to preserve (area or size), using what type of data (raster or vector), and what type of raster data (continuous or thematic) if raster data was chosen. It then adds the appropriate labels, or titles, to the lists and adds them to the applet.
· public boolean isContinent(int X, int Y) checks to make sure that a place on the map was chosen, not just any place on the applet.
· public boolean isNASAAF(int X, int Y) checks to see if the map was clicked in a North America, South America or Africa rectangle.

· public boolean isNPANSP(int X, int Y) checks to see if the map was clicked in a North Pole or South Pole rectangle.

· public boolean isEUAUAS(int X, int Y) checks to see if the map was clicked in a Europe, Australia, or Asia rectangle.

· public void justEnterUnChange(int X, int Y) is called when the cursor leaves the applet and reenters. It determines whether the cursor entered in the same projection area, if not, it allows to the projection type to change.
· public void getPath(int contX, int contY) goes through and starts determining the path by looking at which continent was chosen and whether the user wanted to preserve shape or area.
· public void getHighlight(int contX, int contY) is called from the tutorial and helps it know what should be highlighted.

· public void getFullPath(int contX, int contY) seems to combine and slightly modify the getPath and getHightlight functions.
· public void mouseMoved(MouseEvent e) If a projection type isn’t holding (ready to be clicked by user) it allows the projection type displayed to change depending on where the mouse moved to. This area also allows for decisions to determine what should be projected based on what they want to preserve, shape or area. At the end it changes the cursor appearance if it is over the projection name or over the map.
· public void grabbag(int curx,int cury) calls the functions getPath getHighlight and getFullPath.

· public void mouseClicked(MouseEvent e) recognizes if the mouse was clicked in the applet. It then goes through some logic to determine what type of projection should be used. It then calls a function that will call and display the correct suggestion web browser.
· public void formAndCallURL(int URLid) if there is a projection type is being held it allows a call for it’s details to be displayed in a new web browser.

· public void itemStateChanged(java.awt.event.ItemEvent itemEvent) changes/sets the HighPath and HighLight depending on their previous values and defines a new variable called fullPath and sets vis.
· public void paint(Graphics g) sets the fonts, their color, and allows the projection types be displayed in the applet.
· Then it has variable declarations and functions that start, stop, run, and pause thread functions.
· DSSRegional
· .class – Contains all the un-editable fields, constructors, and methods for the DSSRegional.java file.

· .html – Prompts the user to move and reshape the box to choose the region that they are interested in. It also prompts the user to choose what they want to preserve and the data type. It also contains the addresses of the web browsers for when they are called for from DSSRegional.java.
· .java – Starts with variable declarations. Most things, like decisions, are done in the constructor. In the start of the constructor it loads the map image that will be used and initializes variables projType to "Mercator" preserve to "Shape" dataType to "Raster" rasterData to "Continuous". It then creates the preserve list, the data type list, and the raster type list, adds a label to them and displays them in the applet.
· The mouseMoved function first looks at where the mouse moved to so it can change the cursor accordingly.

· The mouseDragged function then pays attention to when the cursor is dragged and at a corner of the box so it can resize it.
· The mouseClicked function notices when the mouse is clicked. If the mouse is over the textlink box (the suggested projection), it will call the callAndFormURL function to display the browser showing the details of that projection.

· The public void paint function is what shows the resizable box and displays the projection suggestion. It also houses the logic on choosing which projection to use. When a projection is chosen it saves selection as a number in the RID variable to be later used in the callAndFormURL function.
· The public void formAndCallURL uses the RID number form the paint function put into a variable labeled as URLid. Then using the URLid it calls the web browser address from the html file and saves it in the variable called location. Then at the end of the function it tries to get and display that web browser.
· At the end it declares many variables and has functions that control the threading capabilities.

· DSSUpdater

· .java – This file is a testing platform for rendering the java2d version of the DSS decision tree. Since the current version of DSS requires the new JRE, this element of the DSS tutorial has no additional requirements.

· .class – This file contains all the un-editable fields, constructors, and methods for the DSSUpdater.java file.

· DSSUpRead

· .class – This file contains all the un-editable fields, constructors, and methods for the DSSUpRead.java file.

· .java – Deals with threading and makes some calls to the DSSUpdater.
· DSSUpWrite

· .class – This file contains all the un-editable fields, constructors and methods for the DSSUpWrite.java file.

· .java – Deals with threading and what node it is working with at the moment.
· DSSwTutorial.html

· Opens up a split browser with the DSSApplet on top and the tutorialApplet on the bottom.

· DSSwTutorialApplet.html

· Just opens up the DSSApplet

· DSSwTutorialContinent.html

· Opens up a split browser with the DSSContinental applet on top and the tutorial applet highlighted and showing the Continental subgroups.
· DSSwTutorialRegional.html

· Opens up a split browser with the DSSRegional applet on top and the tutorial applet highlighted and showing the Regional subgroups.

· Fulltree.img

· A picture of the complete decision tree.

· FulltreeWithnum.img

· A picture of the complete decision tree with the nodes numbered breadth first.

· FulltreeWithnumMerge.img

· A picture of the complete decision tree with the nodes numbered breadth first.

· Graph

· .class – This file contains all the fields, constructors, and methods created in the graph.java file
· .java – This File is a testing platform for rendering the java2d version of the DSS decision tree. Since the current version of DSS requires the new JRE, this element of the DSS tutorial has no additional requirements.
· GraphContext

· .class – This file contains all the fields, constructors, and methods created in the GraphContext.java file.

· .java – Functions that deal with the graph’s context.
· GraphPallet

· .class – This file contains all the fields, constructors, and methods created in the GraphPallet.java file.
· .java - GraphPallet contains the color scheme information of the Graph class for rendering
· Host.html
· Opens a split browser with the DSSApplet on top and the tutorial on the lower half in their base states. Doesn’t exactly work.
· LinkText

· .class – This file contains all the fields, constructors, and methods created in the LinkText.java file.
· .java - This File is a testing platform for rendering the java2d version of the DSS decision tree. Since the current version of DSS requires the new JRE, this element of the DSS tutorial has no additional requirements.
· Popuptext

· .class – This file contains all the fields, constructors, and methods created in Popuptext.java
· .java – This File is a testing platform for rendering the java2d version of the DSS decision tree. Since the current version of DSS requires the new JRE, this element of the DSS tutorial has no additional requirements.
· RoundGradientContext

· .class – This file contains all the fields, constructors, and methods created in RoundGradientContext.java
· .java – Determines which raster can be colored. ?????
· RoundGradiantPaint

· .class – This file contains all the fields, constructors, and methods created in RoundGradiantPaint.
· .java – Paints round gradient depending on its radius.
· TextNode

· .html – Provides space for the TextNode applet.

· .class – This file contains all the fields, constructors, and methods created in TextNode.java

· .java – This File is a testing platform for rendering the java2d version of the DSS decision tree. Since the current version of DSS requires the new JRE, this element of the DSS tutorial has no additional requirements.
· Tutorial

· .html – Provides space for the Tutorial applet.

· .class – This file contains all the fields, constructors, and methods created in Tutorial.java

· .java – This file does all the tutorial work. It holds the graph node names, x values and y values for the graph. It also has everything that will show up in the nodes, in the pop-ups, and the urls that it goes to when the more link is pressed. It overloads the paint function from inherited Applet class and used to render graphics elements to the Applet space. The update function is used in double buffering to reduce flickering. The mouseMovedEvent handler checks to see if a popup needs to be rendered. The conditions for popup rendering are currently based on cursor in/out of highlight.
· TutorialIcons

· Different instances of the tutorial icon that is used as a button in the DSSAppletwbutton browser.

· Txtnodemain

· .class – This file contains all the fields, constructors, and methods created in the Txtnodemain.java file.
· .java – This File is a testing platform for rendering the java2d version of the DSS decision tree. Since the current version of DSS requires the new JRE, this element of the DSS tutorial has no additional requirements.
· Writer

· Displays the node and path found in the DSSUpWrite.java file.

